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Abstract

We analyze the FIAC 2005 data set using BrainVoyager QX. First, we perform a
standard analysis of the functional and anatomical data that includes
preprocessing, spatial normalization into Talairach space, hypothesis-driven
statistics (one- and two-factorial, single-subject and group-level random effects
GLM) of the block- and event-related paradigms. Strong sentence and weak
speaker group-level effects are detected in temporal and frontal regions.
Following this standard analysis, we perform single-subject and group-level
(Talairach-based) Independent Component Analysis (ICA) that highlights the
presence of functionally connected clusters in temporal and frontal regions for
sentence processing, besides revealing other networks related to auditory
stimulation or to the default state of the brain. Finally, we apply a high-resolution
cortical alignment method to improve the spatial correspondence across brains
and re-run the random effects group GLM as well as the group-level ICA in this
space. Using spatially and temporally unsmoothed data, this cortex-based
analysis revealed comparable results but with a set of spatially more confined

group clusters and more differential group ROI time courses.
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Introduction

BrainVoyager QX (see http://www.BrainVoyager.com) is a software package for

the analysis and visualization of structural and functional MRI data. The program
runs on all major computer platforms including Windows, Linux and Mac OS X.
BrainVoyager QX provides an easy-to-use, interactive graphical user interface
(GUI) on all platforms and its functionality can be extended via C/C++ plugins
and automated via scripts. In order to obtain maximum speed on each platform,
BrainVoyager QX has been programmed in C++ with optimized and highly
efficient statistical, numerical, and image processing routines. The software
includes hypothesis-driven (univariate) and data-driven (multivariate) analyses of
fMRI time series, several methods to correct for multiple comparisons, and tools
to run multi-subject volume and surface-based region-of-interest (ROI) analyses.
The software also contains tools and algorithms for the automatic segmentation
of the brain and for the reconstruction, visualization and morphing (inflation,
flattening, sphering) of the cortical surface. An important feature of the software
is that the analyses of functional and anatomical data are highly integrated. Not
only can each type of statistical map be easily projected on the surface rendering
of a cortical reconstruction, but also individual anatomical information (as
provided e.g. by labeled cortical voxels and individual cortical gyral and sulcal
patterns) is actively used in the statistical analysis of single-subject and group
fMRI data, with the scope of enhancing sensitivity and improving the spatial
correspondence across brains (see below). Other advanced analyses available
in BrainVoyager QX were not performed due to space limitations, including
BOLD latency mapping (Formisano et al.,, 2002) and effective connectivity

analysis (Granger causality mapping, Roebroeck et al., 2005).

In the present paper we describe some of the methods implemented in
BrainVoyager QX (version 1.6) in the context of the analysis of the FIAC 2005
dataset. The details of the dataset and the experimental design are described in

Dehaene-Lambertz et al. (this issue).
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First, we illustrate a standard analysis of the functional and anatomical data,
including preprocessing, spatial normalization into Talairach space, hypothesis-
driven statistics of the block- and event-related paradigms for a single subject
(subject 3) and the group data. Following this standard hypothesis-driven
analysis, we apply single-subject data-driven cortex-based Independent
Component Analysis (Formisano et al., 2004) and a recently developed group-
level Independent Component Analysis technique (Esposito et al., 2005). We
compare the results of this data-driven analysis approach with the results
obtained with univariate hypothesis-driven methods. Finally, we apply a high-
resolution cortical alignment method (Goebel, 2004) to improve the spatial
correspondence across brains and perform a random effects group GLM and

group ICA analysis using the cortically aligned brains.

Methods
Subjects

The original FIAC 2005 dataset includes data from sixteen subjects. In this
paper, we report the results of analyses performed individually on subject 3
(single-subject analysis) and on a cohort of twelve subjects (group analysis). We
excluded subject 5 (no anatomical scan was available), subject 7 (data from one
functional run was missing) and subject 8 and subject 12 (excessive motion, as

estimated during preprocessing).

Preprocessing of functional data
The functional data (ANALYZE format) was loaded and converted into
BrainVoyager’s internal “FMR” data format. The following standard sequence of

preprocessing steps was performed for the data of each subject.

Slice scan time correction. Slice scan time correction was performed using
sinc interpolation based on information about the TR (2500 msec) and the order

of slice scanning (ascending, interleaved).
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Head motion correction. 3D motion correction was performed to detect and
correct for small head movements by spatial alignment of all volumes of a subject
to the first volume by rigid body transformations. Estimated translation and
rotation parameters were inspected and never exceeded 3 mm or 2 degrees,

except in subjects 8 and 12 which were excluded from the analysis.

Drift removal. Following a linear trend removal, low frequency nonlinear drifts of
3 or less cycles (0.0063Hz) per time course for the block- and 7 cycles (0.015
Hz) for the event-related design time-series were removed by temporal high pass
filtering. Since event-related responses have more energy at higher frequencies
we could apply a higher cut-off, making the filtering of low-frequency content
(linear and non-linear drifts) more effective. Conversely, the more sustained
responses in the block design have more energy at lower frequency and this
requires more attention in filtering the low-frequency content since using a higher
cut-off may - besides reducing drifts - also reduce the power of the functional
responses. A low pass Gaussian temporal filter with FWHM of two data points
was applied to the block-design data sets as well to achieve modest temporal

smoothing.

Spatial smoothing. Modest spatial smoothing using a Gaussian filter (FWHM =
5mm) was applied for the volume-based analysis. No spatial smoothing was

used for the cortex-based analysis.

Preprocessing of the anatomical data

Intensity inhomogeneity correction and spatial transformations. The
anatomical data (ANALYZE format) of each subject was loaded and converted
into BrainVoyager’s internal “VMR” data format (Fig. 1A). Since the data
exhibited spatial intensity inhomogenities, a correction method (Vaughan et al.,
2001) was applied, which estimates a bias field by analyzing the change of white

matter intensities over space (Fig. 1B). The data was then resampled to 1 mm
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resolution (Fig. 1C), and transformed into ACPC and Talairach standard space
(Fig. 1D). The three spatial transformations were combined and applied
backward in one step to avoid quality loss due to successive data sampling. The
two affine transformations, iso-voxel scaling and ACPC transformation, were
concatenated to form a single 4 x 4 transformation matrix m. For each voxel
coordinates in the target (Talairach) space a piecewise affine “Un-Talairach” step
was performed, followed by application of the inverted spatial transformation
matrix, m™". The computed coordinates were used to sample the data points in

the original 3D space using sinc interpolation.

Brain segmentation. For 3D visualization, the brain was segmented from
surrounding head tissue using an automatic “brain peeling” tool. The tool
analyzes the local intensity histogram in small volumes (20x20x20 voxels) to
define thresholds for an adaptive region growing technique. This step results in
the automatic labeling of voxels containing the white and grey matter of the brain
but also other high-intensity head tissue. The next step consists of a sequence of
morphological erosions to remove tissue at the border of the segmented data. By
“shrinking” the segmented data, this step separates subparts, which are
connected by relatively thin “bridges” with each other. By determining the largest
connected component after the erosion step, the brain is finally separated from
other head tissue since it constitutes the largest subpart. Finally, the sequence of
erosions is reversed but restricted to voxels in the neighborhood of the largest
connected component. This step re-adds the tissue at the borders of the brain
which was removed by the erosion step. Figure 1d shows a slice and figure 1e a

volume rendering of the brain after application of the brain segmentation tool.

Cortex segmentation. In order to perform a cortex-based data analysis, the grey
/ white matter boundary was segmented using largely automatic segmentation
routines (Kriegeskorte & Goebel, 2001). Following the correction of
inhomogeneities of signal intensity across space as described above, the white /

gray matter border was segmented with a region-growing method using an
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analysis of intensity histograms. Morphological operations were used to smooth
the borders of the segmented data and to separate the left from the right
hemisphere. If necessary, manual corrections were made to obtain correct
segmentation results. This was necessary in the present data especially in the
upper part of the brains due to a small white / grey matter contrast-to-noise ratio.
More specifically, the segmented boundary in this region did initially not model
the white-grey matter boundary but the outer (pial) boundary. Using optimized
sequences (Howarth et al., Neurolmage, 2005) and averaging two T1 scans of
the same subject usually avoids this problem. Each segmented hemisphere was
finally submitted to a “bridge removal” algorithm, which ensures the creation of
topologically correct mesh representations (Kriegeskorte & Goebel, 2001). The
borders of the two resulting segmented subvolumes were tessellated to produce
a surface reconstruction of the left and right hemisphere (Fig. 1F). With a fast,
fully automatic 3D morphing algorithm (Goebel, 2000), the resulting meshes were
transformed into inflated (Fig. 1G) and flattened (Fig. 2A) cortex representations.
The original folded cortex meshes are used as the reference meshes for
projecting functional data (maps and time courses) on inflated and flattened
representations. A morphed surface always possesses a link to the folded
reference mesh so that functional data can be shown at the correct location on
folded, inflated and flattened representations. This link was also used to keep
geometric distortions to a minimum during inflation and flattening through
inclusion of a morphing force that keeps the distances between vertices and the
area of each triangle of the morphed surface as close as possible to the
respective values of the folded reference mesh. For subsequent cortex-based
analysis, the folded cortex meshes were used to sample the functional data at
each vertex (node) resulting in a mesh time course (“MTC”) data set for each run

of each subject.

Normalization of functional data
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To transform the functional data into Talairach space, the functional time series
data of each subject was first coregistered with the subject’s 3D anatomical data
set, followed by the application of the same transformation steps as performed
for the 3D anatomical data set (see above). This step results in normalized 4D
volume time course (“VTC”) data. In order to avoid quality loss due to successive
data sampling, normalization was performed in a single step combining a
functional-anatomical affine transformation matrix, a rigid-body ACPC
transformation matrix and a piecewise affine Talairach grid scaling step. As
described for the anatomical normalization procedure, these steps were
performed backward starting with a voxel in Talairach space and sampling the
corresponding data in the original functional space.

In the context of the functional-anatomical alignment, some manual adjustment
was necessary to reduce as much as possible the geometrical distortions of the
echo-planar images, which exhibited linear scaling in the phase-encoding
direction. The necessary scaling adjustment was done interactively using

appropriate transformation and visualization tools of BrainVoyager QX.

Hypothesis-driven analysis

Analysis steps

For each run of each subject’s block and event-related data, a BrainVoyager
protocol file (PRT) was derived representing the onset and duration of the events
for the different conditions. From the created protocols, one and two-factorial
design matrices were defined automatically. In order to account for hemodynamic
delay and dispersion, each of the predictors was derived by convolution of an
appropriate box-car waveform with a double-gamma hemodynamic response
function (Friston et al., 1998). Using hypothesis-driven, voxel-wise standard
analyses (GLM), we tested for overall task-related effects to check general
appropriateness of the analyses. This was followed by a GLM analysis of the 2 x
2 factorial design with three predictors testing for a sentence repetition main

effect, a speaker repetition main effect and a sentence x speaker interaction
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effect, respectively. One compact way to perform a 2-factorial GLM analysis in
BrainVoyager is to use the so-called factorial design builder, which is based on
the protocol definition and allows coding each single factor effect as well as each
type of interaction effects as a separate predictor in the design matrix used in the
GLM fit procedure.

We performed the GLM analysis in subject 3 (Figure 2A-B: block data) and in the
group of twelve subjects, after transformation in the conventional Talairach space
(random effects results, Figure 3A: block data; Figure 3B-C: event-related data).
After fitting the GLM and accounting for the effects of temporal serial correlation
(using AR(1) modeling, see Bullmore et al., 1996), group or individual t-maps of
sentence repetition, speaker repetition and sentence x speaker interaction were
generated. For group-level GLM analyses, we used a standard two-level
(hierarchical) ordinary least squares (OLS) fit procedure. Given the balanced
design of the study and a sufficient number of trials, the OLS solution is expected
to be very similar to a mixed-effects solution. Thresholding of these maps with
appropriate correction for multiple comparisons can be performed in various
ways in BrainVoyager QX including the false discovery rate (FDR, Genovese et
al., 2002) approach. Here we used a recently implemented approach based on a
three-dimensional extension of the randomization procedure described in
Forman et al. (1995) for multiple comparison correction. First, a voxel-level
threshold was set at t=3.1 (p=0.01, uncorrected). Thresholded maps were then
submitted to a whole-brain correction criterion based on the estimate of the
map’s spatial smoothness and on an iterative procedure (Monte Carlo simulation)
for estimating cluster-level false-positive rates. After 1000 iterations, the
minimum cluster size threshold which yielded a cluster-level false-positive rate
(alpha) of 5% was applied to the statistical maps. The implemented method
corrects for multiple cluster tests across space. For each simulated image, all
"active" clusters in the imaged volume are considered and used to update a table
reporting the counts of all the clusters above this threshold for each specific size.
After a suitable number of iterations (e.g. 1000), an alpha value is assigned to

each cluster size based on its observed relative frequency. From this information,
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the minimum cluster size threshold was specified in order to yield a cluster-level

false-positive rate of a = 5%.

Results

Figure 2 and 3, and table 1, summarize the main results of the hypothesis-driven
GLM analysis. Group analysis of ‘block’ data showed a significant main effect of
sentence repetition in the left anterior superior temporal sulcus and gyrus
(STS/STG, Talairach coordinates of the peak: -56, -13, +1, figure 3a). A similar
effect was also evident in the data of subject 3, that was analyzed individually
(Figure 2b).

In the group analysis of the block data, there was also a significant sentence-by-
speaker interaction (map not shown) ventrally in the /eft and in the right temporal-
occipital cortex (-54, -46, -23 and +39, -64, -27). However, the amplitude of the
average BOLD responses to each condition in these regions was much smaller
than in STS/STG.

Group analysis of event-related data showed a similar but more extended and
bilateral main effect of sentence repetition in the left and right STS/STG (-58,-10,
-2 and +54,-4,-5, figure 3b). In addition, there was also a main effect of speaker
repetition located in the STG but more superiorly (-58, -19, 14 and 49,-12,11,
figure 3c).

Data-driven analysis

Analysis steps

Single-subject ICA (Formisano et al., 2002; 2004) and Group ICA (Esposito et
al., 2005) were applied to the first run of the block design experimental time-
series. The data of subject 3 were used for the single-subject cortex-based ICA

analysis and the whole sample of 12 subjects was used for the volume-based
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and cortex-based group-level analysis in Talaraich space and in the aligned
cortical space (see below), respectively.

Individual and self-organizing group-level ICA were applied to the preprocessed
functional time series using two C++ plugin extensions of Brain Voyager QX. The
single-subject ICA plugin implements methods described in Formisano et al.
(2002; 2004) and includes a C++ implementation of the fastICA algorithm
(Hyvarinen and Oja, 2001; Esposito et al., 2002). Prior to the ICA decomposition,
the initial dimensions of the functional dataset were reduced from 191 (i.e.,
number of timepoints) to 40 using principal component analysis (PCA), which
corresponded to more than 20% of the initial temporal dimensions and accounted

in all subjects for more than 99.9% of the total variance-covariance.

Individual ICA (figure 2C) detected two consistently task-related components,
one including bilaterally primary and secondary auditory cortex regions and one
including a more distributed temporo-frontal circuit, with clusters located along
the superior temporal sulci and gyri (STS/STG) and in the inferior frontal gyri
(IFG). The time courses of activity of both components were positively correlated
with auditory stimulation in all four conditions but only the temporo-frontal
component demonstrated a substantial adaptation effect during the sentence
repetition and speaker repetition intervals. The amplitude of the component time
course was higher during the blocks with different sentences and different

speakers than during the blocks with the same sentences.

The ICA decompositions obtained from the data sets of each subject were
submitted to the self-organizing group ICA (sogICA) procedure, which has been
implemented as a C++ plugin in BrainVoyager QX according to the methods and
component clustering algorithm described in Esposito et al. (2005). In this
framework, the independent components from individual data sets are “clustered”
at the group level. The clustering algorithm is based on components’ mutual
similarity measures implemented as linear spatial correlations in a common

anatomical space. The common space may be either the voxels of a whole-brain
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mask defined in the resampled Talairach volume or vertices from cortical surface
meshes resampled on the standard sphere linked to each other by the cortex-
based alignment procedure (see below). In general, the soglCA framework
allows the similarity matrix to be a combination of spatial and temporal measures.
Using pure spatial similarity allows investigation of the consistency of
independent components in a group of subjects despite the timing of experiments
(e.g. differences in stimulus presentation across subjects). The similarity matrix
is, then, transformed into a dissimilarity matrix, which is used as a “spatial
distance” matrix within a hierarchical clustering algorithm (see also Himberg et
al., 2004). Cluster “group” components were calculated as random effects maps.
The random effects statistic for each voxel was calculated as the mean ICA z-
value of that voxel across the individual maps divided by its standard error,
resulting in a t-statistic, which was converted to a z-statistic. The resulting map of
z-values was visualized using a threshold of z = 2.2 (p=0.0139, one-sided). The
cluster size in the subject component space was set to twelve components per
subject. Thus, components with maximal spatial consistency across the whole
sample of 12 analyzed subjects were extracted first and ranked high with respect

to the mean intra-cluster similarity.

Results

Figure 4 shows the results of soglCA. Self-organizing group-level ICA identified a
number of neurophysiologically meaningful group components, whose selection
was facilitated by the ranking of the clusters given by the intra-cluster similarity
measures. Among the first 10 clusters, we found the consistently task-related
component of early auditory processing, mainly focused in primary and
secondary auditory regions (Figure 4a, red component), and at least four other
non-task-related or negatively task-related components, a parieto-frontal
component (Figure 4a, cyan component), a parieto-cingulate component (Figure
4a, yellow component), an occipital component (Figure 4a, green component)

and a sensory-motor component (Figure 4a, purple component). These
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components reflect known circuits of functional connectivity and include the so
called “default-mode” network (Raichle et al., 2001; Grecious et al., 2004).

Most important for the repetition paradigm, we found a temporo-frontal
component (Figure 4b) whose time course of activity was, again, positively and
consistently correlated with auditory stimulation in all four conditions and
exhibited the adaptation effect during the sentence repetition and speaker
repetition intervals of stimulation. The spatial layout of this component was more
lateralised in the left hemisphere and activated extended clusters along the
superior temporal sulcus and gyrus (STS/STG) and the inferior frontal gyrus
(IFG).

Analysis in aligned cortical space

A common cortical space potentially offers a more powerful group-level functional
data analysis due to a substantially improved anatomical alignment, which also
improves the alignment of homologous functional regions (see below). Since gyri
and sulci are not well aligned after standard Talairach or MNI normalization
procedures, suboptimal group results may be obtained since active voxels of
some subjects will be averaged with non-active voxels of other subjects due to
pure alignment. In order to increase the overlap of activated brain areas across
subjects, the functional data of each subject is extensively smoothed, typically
with a Gaussian filter with a FWHM of 8 - 12 mm. While such an extensive spatial
smoothing increases the overlap of active regions, it introduces other problems
including averaging of non-homologous functional areas within and across
subjects and the introduction of a bias for the statistical inference for clusters
equal to or larger than the chosen Gaussian filter (matched filter theorem). The
goal of cortex-based alignment schemes is to explicitly align corresponding gyri

and sulci across subjects in order to reduce these problems.
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High-resolution intersubject cortex alignment

While functional areas do not precisely follow cortical landmarks, it has been
shown for areas V1 and motor cortex that a cortical alignment approach
substantially improves statistical group results by reducing anatomical variability
(Fischl et al., 1999). In BrainVoyager QX, a high-resolution, multi-scale version of
such a cortical mapping approach has been developed (Goebel et al., 2002;
2004), which automatically aligns brains using curvature information of the
cortex. Since the curvature of the cortex reflects the gyral/sulcal folding pattern of
the brain, this brain matching approach essentially aligns corresponding gyri and
sulci across subject’s brains. The implemented high-resolution, multi-scale cortex
alignment procedure has been proven to substantially increase the statistical

power and spatial specificity of group analyses (e.g. Van Atteveldt et al., 2004).

Cortex-based alignment operates in several steps. The folded, topologically
correct, cortex representation of each hemisphere (see section “Anatomical
preprocessing”) constitute the input of the alignment procedure. In the first step,
each folded cortex representation is morphed into a spherical representation
(Fig. 5A), which provides a parameterizable surface well-suited for across-
subject non-rigid alignment. Each vertex on the sphere (spherical coordinate
system) corresponds to a vertex of the folded cortex (Cartesian coordinate
system) and vice versa. The curvature information computed in the folded
representation is preserved as a curvature map on the spherical representation.
The curvature information (folding pattern) is smoothed along the surface to
provide spatially extended gradient information driving intercortex alignment
minimizing the mean squared differences between the curvature of a source and
a target sphere. The essential step of the alignment is an iterative procedure
following a coarse-to-fine matching strategy. Alignment starts with highly
smoothed curvature maps and progresses to only slightly smoothed curvature
representations. Starting with a coarse alignment as provided by ACPC or

Talairach space, this method ensures that the smoothed curvature of the two
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cortices possess enough overlap for a locally operating gradient-descent
procedure to converge without user intervention (Goebel et al., 2002; Goebel et
al., 2004). Visual inspection and a measure of the averaged mean squared
curvature difference reveal that the alignment of major gyri and sulci can be
achieved reliably by this method. Smaller structures, visible in the curvature
maps with minimal smoothing, are aligned to a high degree but can not be

perfectly aligned due to anatomical differences between the subjects’ brains.

The program offers two approaches to define a target brain for alignment. In the
explicit target approach, one sphere is selected as a target to which all other
spheres are subsequently aligned. The target sphere can be derived from one of
the brains of the investigated group or from a special reference brain, such as the
MNI template brain. Although tests have shown that achieved alignment results
are very similar when using different target spheres, the selection of a specific
target brain might lead to suboptimal results, if the selected brain contains many
regions with a non-typical folding pattern. In the moving target group averaging
approach, the selection of a target sphere is not required. In this approach, the
goal function is specified as a “moving target” computed repeatedly during the
alignment process as the average curvature across all hemispheres at a given
alignment stage. The procedure starts with the coarsest curvature maps. Then
the next finer curvature maps are used and averaged with the obtained alignment
result of the previous level. Figure 5A shows the obtained result from the moving
target alignment approach. The four spheres show the averaged curvature maps
of the 12 cortices before and after alignment for the left and right hemispheres.
Figure 5B shows a folded averaged cortex representation of the left and right
hemisphere of 12 subjects after cortex alignment. This representation is obtained
by averaging 3D coordinates of vertices of the folded meshes on the basis of the
established correspondence mapping. This representation demonstrates the
successful operation of the cortex-based alignment approach revealing an
averaged cortex representation containing almost the same level of detail as

each of the 12 individual brains.
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The established correspondence mapping between vertices of the cortices is
used to align the subjects’ functional data. As described above, the functional
time course data is attached to the vertices (nodes) of the cortex meshes by
sampling the volume time courses (“VTCs”) at the vertex positions of the folded
cortex meshes of each subject resulting in a mesh time course (“MTC”) for each
run of each subject’s data (Fig 5C). The fixed and random-effects GLM and the
group-level ICA procedures work in the same way as in standard volumetric
space but are modified to take as input the cortically aligned mesh time course

data.

Hypothesis-driven cortex-based group analysis

The results of the cortex-based random-effects (RFX) group GLM analysis
confirmed the volume-based analyses in Talairach space. The results from the
spatially unsmoothed block data is shown in figure 6 superimposed on the
average group cortex. The overall activation map (Fig. 6A) demonstrates the
good alignment of the cortices of the 12 subjects by revealing activity confined
within and around Heschl's gyrus (p < 0.01, corrected). A sentence repetition
RFX effect (t(11) > 3.1, p < 0.01, uncorrected for multiple comparisons) was
found bilaterally with a more extensive region in the left STS than in the right
STS. It can be seen from the averaged time course that the adaptation effect
evolves over time since the difference between the two different sentence (DSt)
versus the two same sentence (SSt) conditions is almost absent at the beginning
but clearly visible towards the end of the block. This difference was also more
pronounced in the clusters of the left STS than in the cluster of the right STS.
While not significant, the largest trend for a speaker repetition effect was found in
the right anterior STS (Fig 6C).

Data-driven cortex-based group analysis
Although unsmoothed functional data was used, the self-organizing group-level

ICA in the spherically aligned cortex space produced highly consistent results
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with the volume-based group ICA. Limiting our description to the two task-related
components, cortex-based ICA provided a much more anatomically detailed
picture of the same two-component model at the group level than the Talairach
space ICA. Figure 7 shows these components superimposed on the average
cortex brain. The first task-related component exhibited a consistently task-
related pattern of activation without a sentence or speaker repetition effect and
encompassed the primary and secondary auditory regions (red overlay in figure
7); the second, fronto-temporal, component (blue overlay in figure 7) exhibited
again a substantial adaptation effect, but encompassed more precisely and more
bilaterally the superior temporal sulci (STS) and the inferior frontal gyri (IFG) than

the volume-based result.

Conclusions

The present paper illustrates a range of processing methods and algorithms that
are included in BrainVoyager QX and that can be used to analyze functional and
anatomical MRI data. Our hypothesis-driven analysis of the FIAC 2005 data in
Talairach space revealed regions exhibiting a significant sentence repetition
effect in the block data and significant sentence and speaker repetition effects in
the event-related data. The event-related paradigm, thus, seems better suited to
reveal a speaker effect than the blocked paradigm. It should be noted, however,
that the strength of the sentence effect is substantially stronger than the speaker
effect in both paradigms. We observed trend towards a speaker effect. Without
spatial smoothing of the functional data, the cortex-based analysis confirmed the
volume-based analysis providing, however, more focal clusters and more
differential group ROI time courses indicating an improved functional alignment.
Group averaged time courses for the sentence repetition effect in the STS
showed that this effect is almost absent at the beginning of a block and increases

to reach its maximum roughly in the middle of the block.

The data-driven ICA analysis complements the voxel-wise statistical analysis by

focusing on network-related activity. The results of this analysis were surprisingly
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similar to the GLM results separating a main component in and around Heschl's
gyri and a more widespread component in higher auditory cortices, insular and
frontal cortex. We think that the two-component representation provided by the
group ICA results reflects the functional role of each pattern in relation to early
primary auditory processing of the sentences and higher level integration of
sentence and voice-related information processing. While being consistent with
the current models of language and voice processing (see for instance Belin et
al. 2003; 2004), this representation provides a different and more distributed view
of the neural processes elicited by the prolonged auditory stimulation. This
functional connectivity model nicely complements the more localized and effect-
specific view of the studied effects provided by the conventional hypothesis-

driven statistical analysis of the same data.
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Figures

Figure 1 — Anatomical preprocessing demonstrated with data from subject 3. A)
Selected slice of raw data as appearing in BrainVoyager QX after reading the
raw anatomical 3D data set. B) The same slice after inhomogeneity correction
and removal of background noise. C) The same slice after application of a spatial
transformation converting the voxels to isotropic 1mm voxels based on
information in ANALYZE header. D) A slice through the AC-PC plane after
transformation of the data set into Talairach space; the lines and letters represent
the standard proportional grid system (Talairach & Tournaux, 1988). For
visualization purposes, head tissue has been automatically removed by running a
brain segmentation tool (“brain peeling”). E) Result of cortex segmentation
visualized in orthographic slices of the 3D data in Talairach space; the yellow
lines indicate the segmented white / grey matter boundary of the two
hemispheres. The lower left inset shows a volume rendering of the segmented
brain. F) Visualization of the segmented cortex as a reconstructed mesh
representation; convex curvature (reflecting mainly gyri) is colored in light grey,
concave curvature (reflecting mainly sulci) is colored in darker grey. G)

Visualization of an inflated representation of the cortex mesh.

Figure 2 — Hypothesis-driven and data-driven single-subject analysis (subject 3).

A) Single-subject, block design data, one-factorial GLM analysis: main effects of
auditory stimulation (F-statistics, p = 0.05, Bonferroni corrected). B) Single-
subject, block design data, two-factorial GLM analysis: t-map (p=0.01,
alpha=0.05) of sentence repetition effect. C) Single-subject, block-design data,
cortex-based ICA analysis: primary auditory component (red) and temporo-frontal
component (blue). D) Average time courses from selected ROIs of the block
design data showing a strong stimulus-related response in the auditory cortex
(middle panel) and a strong speaker repetition effect in the superior temporal

gyrus / sulcus and inferior frontal gyrus / sulcus (left and right panels). SSt =
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same sentence; DSt = different sentence; SSp = same speaker; DSp = different

speaker.

Figure 3 — Two factorial GLM group-level random effects analysis (12 subjects,
Talairach space).

A) Block design, sentence repetition effect; B) Event-related design: sentence
repetition effect; C) Event-related design: speaker repetition effect. T-maps
(p=0.01, alpha=0.05, see text) are projected on the average of normalized
individual brains (first three columns). Activated clusters are also shown in a
glass-brain view (fourth column). The fifth column shows the time course in

active regions indicated by the white cross on the left.

Figure 4 — Self-organizing group-level ICA analysis (12 subjects, Talairach
space).

A) Auditory component (red), parieto-frontal component (cyan), parieto-cingulate
component (yellow), occipital component (green), sensory-motor component
(purple). (t-maps, p=0.01). B) Temporo-frontal component t-map (p=0.01) with

group condition-averaged time-course showing a speaker repetition effect.

Figure 5 — High-resolution intersubject cortex alignment.

A) Lateral view of left (LH) and right (RH) hemispheres before and after
alignment of 12 subjects; for the cortical alignment, the 24 (2 x 12) cortices were
morphed to a sphere. To visualize the correspondence between gyri and sulci,
the curvature information of the cortices has been superimposed prior and after
alignment. B) Average cortex of left and right hemisphere of 12 subjects after
cortex alignment; this representation is obtained by averaging 3D coordinates of
vertices on the basis of the established correspondence mapping. C)
Visualization of the creation of “mesh time courses”, which are used to run
hypothesis-driven (cg-GLM) and data-driven single and group analyses (cg-ICA)

directly in aligned cortex space.
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Figure 6 — Hypothesis-driven cortex-based group-level random effects analysis
on spatially non-smoothed mesh time courses (12 subjects, block data).

A) Group map of overall stimulation vs baseline superimposed on average group
cortex mesh obtained from cortex-based alignment procedure; time courses are
drawn from regions around left and right Heschl’'s gyrus. B) Group map showing
a strong sentence repetition effect in two clearly identifiable clusters in the
superior temporal sulcus in the left hemisphere and a weaker sentence repetition
effect in the anterior superior temporal sulcus and gyrus in the right hemisphere.
C) Group map showing a weak speaker repetition effect (non-significant, see
text) in the right anterior superior temporal sulcus and gyrus. The time course
reveal that the small trend is more pronounced within the DSt (different sentence)

conditions than the SSt (same sentence) conditions.

Figure 7 — Data-driven cortex-based group-level analysis.

Results of the self-organizing group-level ICA. Auditory (red) and temporo-frontal
(blue) group components projected on the average group cortex mesh (t-maps,
p=0.01).
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Table 1
Area Cluster size t(11) Talairach
(mm?®) (peak) coordinates
X Y Z
Main effect of sentence repetition (block-design)
Left anterior STS/STG 1701 7.1 -56 13 +1
Speaker x sentence interaction effect (block design)

Left temporo-occipital cortex 904 4.64 -54 46 -23
Right temporo-occipital cortex 603 4.87 +39 -64 -27
Main effect of sentence repetition (event-related design)

Left STS/STG 5119 7.31 +54 -4 -5

Right STS/STG 2088 5.56 -58  -10 -2
Main effect of speaker repetition (event-related design)

Left STS/STG 2006 6.82 +49  -12 11

Right STS/STG 239 412 -58  -19 14
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